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1 Introduction

Finite element stabilization is a regularization technique that, in steady-state
settings, is commonly applied in three situations:

• advection dominated problems where stabilization is applied to effect up-
winding and to suppress spurious oscillations; see [26,15,20,24];

• saddle-point type weak formulations where stabilization is applied to cir-
cumvent compatibility (inf-sup) conditions by relaxing the underlying con-
straint; see [10,11,23,22];

• a combination of the above where stabilization serves the dual purpose of
avoiding inf-sup conditions and providing the upwinding necessary for the
advective terms; see [2,5,6,4,14,29–31].

Representative linear steady-state model problems for these three settings are
the advection-diffusion problem 4 :

−ε4φ + b · ∇φ = f in Ω and φ = 0 on Γ, (1)

the incompressible Stokes problem:

−ν4u +∇p = f in Ω

∇ · u = 0 in Ω
and u = 0 on Γ, (2)

and the incompressible Oseen-type problem:

−ν4u + b · ∇u +∇p = f in Ω

∇ · u = 0 in Ω
and u = 0 on Γ. (3)

The formulation and analysis of stabilized methods for these steady-state prob-
lems is well-understood. However, the design of robust and efficient stabilized
methods for their transient counterparts is hardly a settled matter. It is gen-
erally agreed that for advection dominated problems, such as (1), stabilized
methods should be based on time-space elements; see [29] and [30]. The origi-
nal argument used to motivate application of time-space elements (see [26]) is

4 A fourth, separate stabilization setting arises when the reaction-diffusion equation

−ε4φ + γφ = f in Ω and φ = 0 on Γ.

is dominated by the reaction term; see [12],[13], [16], or [25]. Because of its specifics,
we do not consider this type of stabilization in our study.
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that the time derivative and the advective term can be combined into a single
“material derivative” term. Then, the extension of a method such as SUPG
[20] to the transient case naturally leads to a weighting function involving this
material derivative and thus the need to allow for time variation in the finite
element space.

On the other hand, the need for time-space elements is not obvious at all
when stabilization is applied to circumvent the inf-sup stability condition in
the Stokes problem. This condition is caused by the saddle-point nature of
the mixed Galerkin formulation, namely, by the purely spatial divergence free
constraint on the velocity field; see [9]. To circumvent the inf-sup condition it
suffices to relax this spatial constraint which can be done without appealing to
time-space elements. For the transient version of (3), the situation is even more
ambiguous as now stabilization targets two different goals. If (3) is advection
dominated, then time-space elements can be easily justified. But for low to
moderate values of the Reynolds number, stabilization is needed only for the
spatial inf-sup condition.

Some of the most effective algorithms for treating time-dependent problems
can be defined through a process wherein the spatial and temporal discretiza-
tions are separated. Such algorithms are especially well adapted to the cylin-
drical nature of the time-space domain and usually posses excellent stability
characteristics. Another reason for their popularity is that they reduce the
PDE to either a system of ordinary differential equations (ODE’s) or, for
problems with constraints such as (2)-(3), to a system of differential alge-
braic equations (DAE’s). In both cases the ensuing ODE or DAE system can
be solved by many of the available time integration algorithms and solvers.
Thus, in practice for all three cases and for several reasons, implicit, fully dis-
crete formulations in which spatial and temporal discretizations are effected
separately are in much more common use than are coupled time-space for-
mulations. An additional motivation for this choice is the desire to avoid the
increase in the number of unknowns required to achieve more accurate in time
space-time formulations.

As numerical experiences have borne out, separated, fully discrete algorithms
are completely adequate for transient calculations carried out for moderate
to relatively large time steps. However, in settings that require very fine time
resolution, the behavior of such algorithms is not very well understood. Pol-
lution by spurious oscillations at small time steps for parabolic problems was
reported in [17] and further analyzed in [18]. For time integration schemes
coupled with stabilized finite element discretization in space, instabilities have
been observed for cases where a flow solver is combined with multiple time
scale physics simulations, e.g., reacting flows, that require a very small time
step to resolve the chemistry [28]. Instabilities were also noticed in time step
convergence studies (as the time step becomes small compared to the spatial
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grid size) in the context of inf-sup and upwind stabilized schemes; see [2,3,28].

The issue of small time step instabilities in implicit time integration is only now
beginning to attract attention from researchers and practitioners. The main
reason is that most applications of implicit time integrators aim to increase
rather than to decrease the time step. However, in some special circumstances
when a detailed analysis of strongly coupled continuum transport and chem-
ical reaction physics with multiple time and length scales is required, small
time steps become necessary. This situation arises in engineering and scien-
tific applications that are characterized by the co-existence of transport time
scales (advection and diffusion) and very short time scales for non-equilibrium
chemical reactions. The stable and accurate finite element modeling of the
reaction phase may require time steps which are orders of magnitude smaller
than those normally required in the flow solver. For this reason in a typical
reacting flow application an implicit time stepping scheme is often preferred
to allow efficient and accurate treatment of this stiff behavior.

Recent research has focused on small time step instabilities for scalar parabolic
problems [17] and SUPG formulations for one-dimensional advection prob-
lems [8]. Using Rothe’s method, it was shown in [17]-[18] that implicit time
discretization at sufficiently small time steps leads to singularly perturbed el-
liptic problems which can give rise to spurious oscillations. Bradford et al. [8]
demonstrate amplification of under/overshoots when Petrov-Galerkin spatial
discretization is coupled with Crank-Nicholson implicit time integration, and
the CFL number is less than one. They use a heuristic argument based on a
modified equation in one space dimension to argue that small time steps lead
to antidissipative effects in spatially stabilized equations. A heuristic argument
is also used in [2] to motivate the addition of a spatial basis function scaled
by the time step to a combined saddle-point/advection stabilized setting.

In this paper, we focus on theoretical and computational studies of small
time-step instabilities when implicit, finite difference time integration is ap-
plied in conjunction with inf-sup stabilization with respect to space. With the
exception of the preliminary report [7], this setting has not been studied theo-
retically or computationally. Another important aspect that differentiates this
setting from cases considered in [17] and [8] is that it leads to semidiscrete
problems that are DAE’s rather than ODE’s. Here, we extend the results of [7]
to the generalized trapezoidal rule and to three classes of stabilized methods
for the time-dependent Stokes problem. Our interest in this setting is moti-
vated by, among other things, the fact that it is an example of a problem for
which time-space element discretizations are not easily justifiable and so one
is naturally led to separate discretizations in space and time. The addition
of consistent spatial stabilization then leads to additional couplings between
the spatial and temporal ingredients that is not present in unstabilized mixed
methods.
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The paper is organized as follows. A brief summary of the notations used
throughout the paper concludes this section. Section 2 is the core of the pa-
per. There we develop the fully discrete spatially stabilized equations for the
transient Stokes problem and establish sufficient coercivity conditions for the
associated bilinear forms. We use these conditions in conjunction with two
alternative definitions of the stability parameter that appears in stabilized
methods. Our numerical results are collected in Section 3. In Section 4, a brief
summary of the results concludes the paper.

1.1 Nomenclature

In what follows, Ω denotes a simply connected bounded region in Rm, m = 2, 3,
with a sufficiently smooth boundary Γ and T = (0, T ) denotes a given time
interval. Throughout the paper we employ the usual notation Hd(Ω), ‖ · ‖d,
(·, ·)d, d ≥ 0, for the Sobolev spaces of all functions having square integrable
derivatives up to order d on Ω, and the standard Sobolev norm and inner
product, respectively. When d = 0 we will write L2(Ω) instead of H0(Ω)
and drop the index from the inner product designation. As usual, Hd

0 (Ω) will
denote the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖d. Spaces consisting
of vector-valued functions will be denoted in bold face.

The symbol Sh
d will stand for a space of continuous, piecewise polynomial

functions defined with respect to a regular partition Th; see [27], of the domain
Ω into finite elements K. For instance, K can be a hexahedral or a tetrahedron
in three dimensions, or a triangle or a quadrilateral in two dimensions. For
regular partitions finite element functions satisfy various inverse inequalities;
see [27]. The two that will be used here are

‖4uh‖0,K ≤ CIh
−1‖∇uh‖0,K and ‖∇uh‖0,K ≤ CIh

−1‖uh‖0,K. (4)

2 The time-dependent Stokes problem

The main focus of this paper will be on the time-dependent, incompressible
Stokes equations

∂u

∂t
−4u +∇p = f in Ω×T (5)

∇ · u= 0 in Ω×T (6)

u=0 on Γ×T (7)

u(x, 0) =u0(x) in Ω, (8)
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and on fully discrete solution methods for (5)-(8) that result from the appli-
cation of inf-sup stabilized discretization in space with implicit integration in
time. In this equation the pressure has been scaled by the density ρ.

We now briefly review spatial inf-sup stabilization techniques for the steady-
state problem (2). To define a mixed method for (2) we choose subspaces
Vh ⊂ H1

0(Ω) and P h ⊂ L2
0(Ω) and seek uh ∈ Vh, ph ∈ P h such that

G({uh, ph}, {vh, γqh}) = (f ,vh) ∀ (vh, qh) ∈ (Vh, P h), (9)

where

G({uh, ph}, {vh, γqh}) = (∇uh,∇vh)− (ph,∇ · vh)− (γqh,∇ · uh) (10)

and γ = ±1. We recall that (9) is not stable unless the pair (Vh, P h) satisfies
the inf-sup condition. Ultimately, stabilization is applied to (9) in order to
circumvent this condition because it imposes significant restrictions on the
choice of velocity and pressure finite elements. Since the main motivation for
stabilized methods is to allow the use of equal order interpolation, throughout
this paper we restrict attention to continuous pressure approximations and
use the equivalent form

G({uh, ph}, {vh, γqh}) = (∇uh,∇vh) + (∇ph,vh) + (γ∇qh,uh) (11)

instead of (10). To stabilize (11), we choose a pair of weighting functions
Wm(vh, qh), Wc(vh, qh); a pair of discrete inner products < ·, · >m, < ·, · >c;
and seek uh ∈ Vh, ph ∈ P h such that

G({uh, ph}, {vh, qh}) + < Rm(uh, ph), Wm(vh, qh) >m

+ < Rc(uh, ph), Wc(vh, qh) >c= (f ,vh) (12)

for all vh ∈ Vh and qh ∈ P h, whereRm(uh, ph)

Rc(uh, ph)

 =

−4uh +∇ph − f

∇ · uh


are the residuals of (2). In what follows we focus attention to the family of
standard stabilized methods. For these methods

Wc(vh, qh) = 0; Wm(vh, qh) = α4vh −∇qh,

where α takes the values ±1 or 0, and

〈uh,vh〉m =
∑
K∈Th

τK(uh,vh)K

6



is a “broken” L2 inner product weighted by a stability parameter τK. A stan-
dard stabilized method seeks uh ∈ Vh and ph ∈ P h such that

G({uh, ph}, {vh, γqh}) (13)

−
∑
K∈Th

τK
(
−4uh +∇ph − f ,−α4vh + γ∇qh

)
K

= (f ,vh)

for all vh ∈ Vh, qh ∈ P h. The method (13) is the pressure-Poisson stabilized
Galerkin [22] when α = 0; the Galerkin-Least-Squares method when α = 1
[23] and the Douglas-Wang method [11] when α = −1. For a taxonomy of
standard stabilized methods and their properties see [1]. The weight τK is
important ingredient of standard stabilized methods. A typical definition is

τK = δh2
K, (14)

where hK is a measure of the element size and δ is a stabilization parameter
that is independent of hK. This parameter must remain bounded away from
zero because otherwise the stabilizing effect will be lost. For some methods,
sufficient stability conditions also require that δ remains bounded from above;
see [23], [15], [10]. Here we will assume that the proper values of this parameter
are used in (13) so that the methods are stable for any conforming choice of
Vh and P h. For more details about the proper range of values for τK and its
origins, we refer to [10], [15], [19], [21], [29], [32], and the computational study
in [1].

Setting Wc to zero excludes the residual of the continuity equation from the
stabilization. This term is primarily used in conjunction with the nonlinear
Navier-Stokes equations where it provides an additional stabilization effect
needed to cope with high advection regimes; see [29]. Here, its omission is not
critical for the analyses.

2.1 Fully-discrete algorithms

Let us now turn attention to algorithms for the time-dependent problem (5)-
(8) that are defined through a process wherein the spatial and temporal dis-
cretizations are separated. When finite elements are used for spatial discretiza-
tion in (5)-(8) the resulting problem will not be stable unless the pair (Vh, P h)
employed for this purpose satisfies the inf-sup condition. As a result, if one
wishes to use an unstable pair (Vh, P h), spatial discretization must necessar-
ily include some form of regularization. Our principal goal is to investigate
fully-discrete methods for the transient problem (5)-(8) that rely upon the
same type of spatial discretization as in (13). We will refer to these algorithms
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as spatially stabilized fully discrete methods. For simplicity, attention will be
restricted to pairs of C0 Lagrangian spaces defined with respect to the same
triangulation and having the same polynomial order. For instance, in three
dimensions we can set Vh = [Sh

d ]3 ∩H1
0(Ω) and P h = Sh

d ∩ L2
0(Ω).

To derive the spatially stabilized schemes we begin in the usual manner by
seeking an approximate solution to (5)-(8) in the form

uh(x, t) =
N∑

i=1

αi(t)ξ
i
h(x) and ph(x, t) =

M∑
i=1

βi(t)ξ
i
h(x),

where {ξi
h}N

i=1 and {ξi
h}M

i=1 denote the nodal bases for Vh and P h, respectively.
After inserting this solution into a standard weak form of (5)-(8) we obtain
the (un-stabilized) formulation: seek uh(·, t) ∈ Vh and ph(·, t) ∈ P h such that

(u̇h,vh) + G({uh, ph}, {vh, γqh}) = (f ,vh) (15)

(uh(·, 0),vh) = (u0,vh) (16)

for all vh ∈ Vh, qh ∈ P h and all t ∈ T. Since the pair (Vh, P h) does not verify
the inf-sup condition, the form G(·, ·) in (15)-(16) is unstable. To stabilize
(15)-(16) spatially it would suffice to modify G(·, ·) by adding the same terms
as in (13). However, if u is an unsteady solution of (15)-(16),

−4u +∇p− f = −u̇ 6= 0

and so the modified equation will not be consistent anymore. This problem
can be solved by simply changing the stabilization term to

−
∑
K∈Th

τK
(
u̇h −4uh +∇ph − f ,−α4vh + γ∇qh

)
K

.

The modified problem: seek uh(·, t) ∈ Vh and ph(·, t) ∈ P h such that

(u̇h,vh)−
∑
K∈Th

τK (u̇h,−α4vh + γ∇qh)K+ (17)

G({uh, ph}, {vh, γqh})−
∑
K∈Th

τK (−4uh +∇ph,−α4vh + γ∇qh)K

= (f ,vh)−
∑
K∈Th

τK (f ,−α4vh + γ∇qh)K

(uh(·, 0),vh) = (u0,vh) (18)

for all vh ∈ Vh, qh ∈ P h and all t ∈ T is consistent and stable.
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Compared to the standard Galerkin semi-discrete equation (15) the spatially
stabilized formulation has two additional terms. The role of

−
∑
K∈Th

τK (−4uh +∇ph,−α4vh + γ∇qh)K (19)

is to stabilize the spatial discretization by relaxing the incompressibility con-
straint (6), while

−
∑
K∈Th

τK (u̇h,−α4vh + γ∇qh)K (20)

is required to preserve the consistency. It is easy to see that (17)-(18) is an
index one system of differential-algebraic equations (DAE’s)Mċ + Ac + Bd

BTc

+

Ruċ + Cuc + Dud

Mpċ + Cpc + Dpd

 =

 f

0

+

 fu

fp

 (21)

with initial condition

c(0) = c0, (22)

for the unknown coefficients c = (α1(t), . . . , αN(t)) and d = (β1(t), . . . , βM(t))
of uh(x, t) and ph(x, t), respectively. M, A and B are defined in the usual
manner from (15) and represent the (consistent) mass, stiffness, and gradient
matrices; f is the Galerkin source term;

fu = −
∑
K∈Th

τK
(
f ,−α4ξi

h

)
K

and fp = −
∑
K∈Th

τK
(
f , γ∇ξi

h

)
K

.

The rest of the matrices in (21) are contributed by the stabilizing term (19)
and the consistency term (20):

Ru
ij = −

∑
K∈Th

τK
(
ξj

h,−α4ξi
h

)
K

; Mp
ij(i, j) = −

∑
K∈Th

τK
(
ξj

h, γ∇ξi
h

)
K

;

Cu
ij = −

∑
K∈Th

τK
(
−4ξj

h,−α4ξi
h

)
K

; Cp
ij = −

∑
K∈Th

τK
(
−4ξj

h, γ∇ξi
h

)
K

;

Du
ij = −

∑
K∈Th

τK
(
∇ξj

h,−α4ξh

)
K

; Dp
ij = −

∑
K∈Th

τK
(
∇ξj

h, γ∇ξi
h

)
K

.

To write (21) more compactly let

Mu = M + Ru; Ku = A + Cu; Kp = BT + Cp;
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Gu = B + Du; Gp = Dp; fu := f + fu;

so that (21) takes the formMuċ + Kuc + Gud

Mpċ + Kpc + Gpd

 =

 fu

fp

 . (23)

The system of DAE’s (23) and (22), or equivalently (17)-(18) may be solved
by any of the available DAE solvers. In this paper we use the θ-method,
also known as the Generalized Trapezoidal Rule. To discretize in time, the
interval (0, T ) is subdivided into L subintervals [tk, tk+1], k = 0, . . . , L with
lengths ∆k

t . Throughout, fu,k = fu(tk), fp,k = fp(tk); uk
h, pk

h, ck and dk denote
approximations to uh(x, tk), ph(x, tk), c(tk) and d(tk), respectively. Given c0,
ck+1 and dk+1 for k = 0, 1, . . . , L− 1 are determined from:

1

∆k
t

Mu(ck+1 − ck)

Mp(ck+1 − ck)

 =

 fu,k
θ

fp,k
θ

−
Kuck

θ + Gudk
θ

Kpck
θ + Gpdk

θ

 , (24)

where

ck
θ = θck+1 + (1− θ)ck and dk

θ = θdk+1 + (1− θ)dk

and likewise for fu,k
θ and fp,k

θ . The value of θ ranges between 0 and 1. For
θ = 0 the scheme (24) is the explicit Euler method, θ = 1/2 gives the second-
order neutrally stable Crank-Nicholson method, and θ = 1 gives the first-order
accurate implicit Euler rule.

Clearly, (24) is a system of linear algebraic equations

 1
∆k

t
Mu+θKu θGu

1
∆k

t
Mp+θKp θGp


 ck+1

dk+1

 = (25)

 fu,k
θ

fp,k
θ

+

 1
∆k

t
Mu−(1− θ)Ku (1− θ)Gu

1
∆k

t
Mp−(1− θ)Kp (1− θ)Gp


 ck

dk


for the unknown coefficients ck+1 and dk+1. We note that Mu and Mp are not
symmetric mass matrices because they include contributions from stabilizing
terms. As a result, even for θ = 0 it may not be possible to lump these matrices
and solve (25) explicitly.

Our main interest is to investigate how solutions of the spatially stabilized
fully discrete method (25) behave when the spatial mesh remains fixed and
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∆k
t 7→ 0. It is not difficult to see that the matrix of the linear system in (25)

is engendered by the parameter-dependent bilinear form

B({uh, ph}, {vh, γqh}; ρ) = (26)

1

ρ

(uh,vh)−
∑
K∈Th

τK (uh,−α4vh + γ∇qh)K


+ θ

G({uh, ph}, {vh, γqh})−
∑
K∈Th

τK (−4uh +∇ph,−α4vh + γ∇qh)K

 ,

where ρ represents the current time step. Therefore, spatial stability of the
implicit time step in (25) can be inferred from the stability properties of the
associated bilinear form (26). When ρ 7→ 0, one potential source of problems
was documented in [17]. There it was noted that implicit time discretiza-
tion of parabolic problems at sufficiently small time steps leads to singularly
perturbed elliptic problems and a possibility for spurious oscillations in the
vicinity of thin layers. The singular perturbation is due to the standard mass
term M.

In this paper we will focus on another aspect of (26) that may have a potential
destabilizing effect, namely, the presence of the extra “mass” term (20), intro-
duced in (17) to preserve consistency. This term couples the time derivative
of the velocity field with the spatial weight function Wm(vh, qh). Unlike the
true mass term, (20) is non-symmetric, indefinite and includes higher order
derivatives. As a result, for small ρ this term may dominate B(·, ·), leading to
a loss of spatial stability.

2.2 Stability analysis of fully discrete forms

We will consider stability of (26) for γ = −1. Note that (26) is a weighted
average of the two mass terms and the spatially stabilized mixed Galerkin
form from (13). Also note that the “mass” term (20) leads to the coupling
τK/ρ between the spatial stability parameter and the time step. Therefore,
coercivity of (26) will depend on all three parameters θ, ρ and τK. The next
theorem quantifies this dependence and establishes a sufficient condition for
maintaining stable approximations. To state the main result assume that there
are two positive numbers τ1 and τ2 such that

0 < τ1 ≤ τK ≤ τ2 for all K ∈ Th. (27)

This assumption is reasonable for regular partitions of the domain Ω into finite
elements. Moreover, for uniform grids we can further assume that τ1 = τ2 = τ .
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Theorem 1 Assume that Th is a regular triangulation and let Vh = [Sh
d ]N ∩

H1
0(Ω) and P h = Sh

r ∩L2
0(Ω) for some d ≥ 2 and r ≥ 1. Then, for 5 0 < θ ≤ 1

B({uh, ph}, {uh,−ph}; ρ) ≥ (28)(
h2

4ρC2
I

+ C1(α, θ, ρ, τK)

)
‖∇uh‖2

0 + C2(α, θ, ρ, τK)‖∇ph‖2
0,

where for α = 0 (Pressure-Poisson stabilization):

C1 = θ

(
1− τ2C

2
I

2h2

)
and C2 =

τ1

2

(
θ − τ2

ρ

)
,

for α = 1 (Galerkin-Least-Squares stabilization):

C1 =

(
θ − τ2C

2
I

2h2
(θ + 2τ2)

)
and C2 =

τ1

2

(
θ − τ2

2ρ

)
,

and for α = −1 (Douglas-Wang stabilization):

C1 =

(
θ − τ2C

2
I

2h2
(θ(ν − 1) + 2τ2)

)
and C2 =

τ1

2

(
θ
(
1− 1

ν

)
− τ2

2ρ

)
,

with ν > 1 an arbitrary real number.

Proof.

Setting (vh, qh)) equal to (uh,−ph) in (26) gives

B({uh, ph}, {uh,−ph}; ρ) =

1

ρ

‖uh‖2
0 +

∑
K∈Th

τK (uh, α4uh +∇ph)K


+θ

‖∇uh‖2
0 +

∑
K∈Th

τK (−4uh +∇ph, α4uh +∇ph)K

 .

First we bound the “mass” term originating from (20). Using Cauchy’s, the ε
and the inverse (4) inequalities

τK
ρ

(
uh, α4uh +∇ph

)
K

5 We recall that temporal stability requires 1/2 ≤ θ ≤ 1. Here we consider spatial
stability of one implicit time step and for the sake of generality θ is allowed to
assume any value in the interval (0, 1].
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≤ τK
ρ

[
|α|‖uh‖0,K‖4uh‖0,K + ‖uh‖0,K‖∇ph‖0,K

]

≤


1

2ρ
‖uh‖2

0,K +
τ 2
K

2ρ
‖∇ph‖2

0,K for α = 0

3

4ρ
‖uh‖2

0,K +
τ 2
K

2ρ
‖∇ph‖2

0,K +
C2

I τ
2
K

h2
‖∇uh‖2

0,K for α = ±1

Summing the last inequality over all elements and using (27),

∑
K∈Th

τK
ρ

(uh, α4uh +∇ph)K (29)

≤


1

2ρ
‖uh‖2

0 +
τ 2
2

2ρ
‖∇ph‖2

0 for α = 0

3

4ρ
‖uh‖2

0 +
τ 2
2

2ρ
‖∇ph‖2

0 +
C2

I τ
2
2

h2
‖∇uh‖2

0 for α = ±1

.

Next, we estimate from below the spatial stabilization term originating from
(19). Using Cauchy’s, ε and inverse (4) inequalities

τK (−4uh +∇ph, α4uh +∇ph)K

≥



τK
2
‖∇ph‖2

0,K −
τKC2

I

2h2
‖∇uh‖2

0,K for α = 0

τK‖∇ph‖2
0,K −

τKC2
I

h2
‖∇uh‖2

0,K for α = 1

τK

(
1− 1

ν

)
‖∇ph‖2

0,K − (ν − 1)
τKC2

I

2h2
‖∇uh‖2

0,K for α = −1

.

Summing over all elements and using (27) gives

∑
K∈Th

τK (−4uh +∇ph, α4uh +∇ph)K (30)

≥



τ1

2
‖∇ph‖2

0 −
τ2C

2
I

2h2
‖∇uh‖2

0 for α = 0

τ1‖∇ph‖2
0 −

τ2C
2
I

h2
‖∇uh‖2

0 for α = 1

τ1

(
1− 1

ν

)
‖∇ph‖2

0 − (ν − 1)
τ2C

2
I

2h2
‖∇uh‖2

0 for α = −1

,

where ν > 1 is arbitrary real number. Combining (29) and (30) shows that

B({uh, ph}, {uh,−ph}; ρ) ≥

13



1

4ρ
‖uh‖2

0 + C1(α, θ, ρ, τK)‖∇uh‖2
0 + C2(α, θ, ρ, τK)‖∇ph‖2

0,

where C1 and C2 are the constants from (28). The theorem now follows by
using the inverse inequality (4) to bound the L2 norm of the velocity from
below by the L2 norm of its gradient.

Theorem 1 implies that a sufficient spatial stability condition for the fully-
discrete problem is to require(

h2

4ρC2
I

+ C1(α, θ, ρ, τK)

)
≥ η1 and C2(α, θ, ρ, τK) ≥ η2 (31)

where, ideally, ηi > 0 should be independent of h, ρ and τ . To see what (31)
means in terms of a condition on τK and ρ, we must first select a definition
of τK. Among the multitude of available definitions we choose two that ex-
emplify the two opposing avenues of approach to construction of τ . To avoid
unnecessary technicalities we consider a uniform triangulation Th so that τK
can take the same value on each element.

The first approach is to argue that since the role of τ in the present context is to
effect spatial inf-sup stabilization it should not depend on the time step and so
τ should be defined according to the steady-state formula (14). For uniform
triangulations (14) reduces to τ = δh2 where δ is a suitable stabilization
parameter independent of h (and ρ). We will refer to this choice as the spatial
stability parameter, τS.

The second approach is to view the model equations as the limit case of a wider
class of transient problems with advection. For such problems definitions of
τ include a time scale variation and advective stabilization scale; see, e.g.,
[4,14,32] and [29,30] for definitions in space-time settings. The alternative to
τS would be to specialize a formula from the transient setting with advection
by dropping the advective scale. For uniform meshes this gives the following
definition:

τ =

(
1

ρ2
+

1

δh4

)−1/2

= ρ

(
1 +

ρ2

δh4

)−1/2

. (32)

Here δ is another parameter independent from h and ρ. This choice will be
referred to as the transient stability parameter, τT .

For τS, sufficient stability conditions (31) specialize to(
h2

4ρC2
I

+ θ

(
1− δC2

I

2

))
> 0 and θ − δh2

ρ
> 0 (33)
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when α = 0,(
h2

4ρC2
I

+ θ − δC2
I

2
(θ + 2δh2)

)
> 0 and θ − δh2

2ρ
> 0; (34)

when α = 1, and(
h2

4ρC2
I

+ θ − δC2
I

2
(θ(ν − 1) + 2δh2)

)
> 0 and θ

(
1− 1

ν

)
− δh2

2ρ
> 0; (35)

when α = −1. Thanks to the term 1/4ρ the first inequality in (33)-(35) will
be satisfied for a sufficiently small ρ. Thus, for a fixed h and ρ 7→ 0 we are
guaranteed that the coercivity constant for the velocity norm in (28) will
remain positive. Moreover, for ρ 7→ 0 this constant will grow. As a result, for
small ρ we can expect that stability of the form with respect to the velocity
field will actually improve.

However, the second stability inequality in (33)-(35) will fail unless

h2 < C(θ)
ρ

δ
, (36)

where C(θ) = θ for (33), C(θ) = 2θ for (34) and C(θ) = 2θ(1− 1/ν) for (35).
This relation between ρ and h is reminiscent of the stability conditions for
explicit time integration schemes, except that now it is the spatial step that
is bounded by the time step.

It is worth pointing out that (36) has appeared in the context of other stabi-
lized methods as well. For instance Blasco and Codina require essentially the
same stability condition to prove time and space error estimates for a fully
discrete stabilized method for the Navier-Stokes equations; see [5,6]. Their
method, however, employes a different kind of stabilization that is motivated
by the Chorin projection scheme and does not use the residual of the momen-
tum equation. The fact that the same condition arises in different stabiliza-
tions suggests that there’s a certain degree of universality in (36), or at least,
that one should not dismiss it as an artifact from the analysis. Our numerical
experiments will reaffirm this conclusion.

Consider next the transient definition (32). For small time steps τT = O(ρ)
and (

h2

4ρC2
I

+ C1(α, θ, ρ, τK)

)
> 0

so that the first inequality in (33)-(35) holds. Also, from (32) we see that
τT < ρ for any δ, h and ρ. As a result, at least for θ = 1, we are guaranteed
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that C2 > 0 for any value of ρ. However, since for small time steps τT = O(ρ),

C2 = O(ρ3).

For instance, for the Pressure-Poisson stabilized method (α = 0)

θ − τT

ρ
= O

(
ρ2

h4

)
; and

τT

2

(
θ − τT

ρ

)
= O(ρ3).

Consequently, for fixed h and ρ 7→ 0 the coercivity constant of the pres-
sure term will rapidly decrease, effectively reducing (26) to an unstable mixed
method. In this case it is clear that small time steps will cause problems in
the solution.

For τS we cannot draw the same definitive conclusion because our stability
conditions are only sufficient but not necessary for the coercivity of (26). As
a result, their violation may not necessarily result in an unstable form. A
proper way to interpret these conditions is to treat them as cautionary warn-
ings that very small time steps may possibly cause problems. Nevertheless,
our conditions allow us to predict what will be the most likely manifestation
of these problems should they actually occur. For both the spatial and the
transient τ definitions the first inequality in (33)-(35) was never violated. In
fact, form (26) becomes “more positive” with respect to the velocity variable
as ρ 7→ 0. Thus, it is unlikely that velocity approximation will suffer from se-
rious problems at small time steps. On the other hand, the second inequality
was violated for both τ definitions. This allows us to conclude that the most
likely victim of small time steps will be the pressure approximation. Another
observation that can be easily verified using (32) is that

τT ≈ τS (37)

whenever δ and ρ satisfy condition (36). For such values, τT is dominated by
the spatial discretization scale and it can be expected that both definitions
will give close if not identical results.

We test these conjectures numerically in the next section.

3 Numerical results

In this section we present numerical results that complement the theoretical
analysis of Theorem 1. Our goal is to determine to what extent violation of
the sufficient conditions in this theorem is reflected in numerical instabilities
or other anomalies at very small time steps.
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In all experiments Ω is the unit square in R2. To test numerical stability of
(26) we perform one step of the implicit Euler method ((24) with θ = 1), for
the exact steady state solution

u =

 sin(πx− 0.7) sin(πy + 0.2)

cos(πx− 0.7) cos(πy + 0.2)

 ;

p(x, y) = sin(x) cos(y) + (cos(1)− 1) sin(1).

The initial condition in (8) is set equal to the exact solution and f is computed
by evaluating the momentum equation (5) for the exact solution. Then we solve
(24) with c0 initialized by the finite element interpolant of the exact velocity
field and

ρn = 10−n for n = 1, 2, 3, 4, 5, 6.

In all experiments, the pressure and velocity are approximated by piecewise
quadratic finite elements defined with respect to the same uniform triangula-
tion of Ω into triangles. The mesh is obtained by dividing Ω into 100 squares
and then drawing the diagonal in each square. All matrices are assembled
using a seven-point quadrature rule and the linear system is solved using a
direct solver. Note that an initial condition for the pressure is not required for
θ = 1. We recall that the P2 − P2 pair employed here does not satisfy the
inf-sup condition.

To establish a reference point for evaluation of the possible impact from the
stabilizing term (19) and the consistency term (20), we compute a mixed
Galerkin finite element solution using the same mesh and the stable Taylor-
Hood pair. This solution is obtained following the same procedure, i.e., by one
step of the implicit Euler method, but applied to the un-stabilized problem
(15)-(16). Table 1 shows the L2 errors of the velocity and pressure approxi-
mations and the H1 error for the velocity. We observe a slight deterioration
in the pressure approximation as the time step is being decreased. Pressure
contours in Figure 1 show the onset of spurious oscillations for the smallest
time step that can be expected to occur according to the analyses of [17].

We now turn attention to the three stabilized methods. Results are presented
for spatial and transient stability parameters. Both definitions require a choice
of the real parameter δ. For each fully-discrete algorithm we chose the value
that minimized the error in the companion steady-state method for the given
mesh. For the Pressure-Poisson and Douglas-Wang methods this value turned
out to be δ = 0.05. For the Galerkin-Least-Squares we found that the smallest
error occurs at δ = 0.04. Tables 2-4 list the L2 and H1 errors for the six
different time steps. For comparison, the third row in each table gives the
errors computed by the associated steady-state stabilized method.

As expected, we observe that reduction of the time step has no negative impact
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on the velocity approximation. The type of τ -definition also doesn’t affect
velocity errors which remain virtually identical to the Taylor-Hood errors.

Consider now the pressure approximations. According to (37) the values of τS

and τT will be close if h and ρ satisfy (36). In our case C(θ) = 1, δ = 0.05 or
δ = 0.04, h ≈ 0.1 and (36) holds if

ρ > max{0.05× 0.01, 0.04× 0.01} = 0.0005. (38)

Inequality (38) is true for ρ1, ρ2 and ρ3 and we can expect all three methods
to yield comparable pressure approximations for these values regardless of the
τ employed. Tables 2-4 and Figures 2-7 show that this is indeed the case for
the first three time steps.

The remaining three time steps ρ4, ρ5 and ρ6 do not satisfy (38). We see
that violation of this condition also coincides with degradation of the pres-
sure approximation for both τT and τS. However, the manifestation of this
deterioration is different for the different τ -definitions. Recall that for small
ρ a stabilized method that employs τT reduces to a mixed formulation. The
expected outcome is a pressure field polluted by spurious oscillations. This is
exactly what we see in Figures 5, 6 and 7.

In contrast, when τS is employed, pressure approximations do not develop
significant oscillations even for the smallest time step. However, as the time
step is being reduced, pressure begins to deviate from the expected profile.
For Pressure-Poisson and Douglas-Wang methods deviation occurs at ρ4, for
the Galerkin-Least-Squares it occurs earlier at ρ3. These values are in a very
good agreement with the sufficient bound in (36).

To summarize, our experiments indicate that

h2 < C
ρ

δ
,

where C is a constant that depends on the type of implicit time scheme but not
on the values of h and ρ, can be used as a reliable indicator for the threshold
values of the time step beyond which methods will experience problems with
stability or accuracy.

4 Conclusions

We have demonstrated theoretically and numerically that implicit time in-
tegration combined with inf-sup stabilized spatial discretization may lead to
anomalous solutions for very small time steps and fixed spatial mesh. The type
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of anomalies depends on the type of τ -definition employed in the method. For
transient stability parameters small time steps lead to spurious pressure oscil-
lations while for spatial stability parameters pressure profiles begin to deviate
from the exact solution. In both cases the onset of anomalous behavior occurs
when time step becomes smaller than the threshold value ρ ≈ C(θ)δh2. As a
result, the spatial grid size cannot be chosen independently from the time step,
if stable and accurate approximation is desired. For problems with multiple
time scales this stability prerequisite forces an excessive, non-physical spatial
refinement and significant increase in computational cost.

Since the cause for the anomalous behavior is the coupling between the spatial
and temporal scales engendered by the “mass” term (20), problems can be
avoided by either lagging or completely discarding this term. This effectively
renders the scheme into a penalty-like formulation. Alternatives that can both
maintain consistency and provide stability are to employ time-space elements
or to use stable pairs of finite element spaces. Further studies are also needed
to reveal the source of the anomalous pressure behavior when the spatial
stability parameter τS is employed in the methods. These will be reported in
a forthcoming paper.

Acknowledgements

We would like to thank Marek Behr, Isaac Harari and Rich Lehoucq for helpful
discussions. We also thank the anonymous referees for the helpful comments
and suggestions.

References

[1] T. Barth, P. Bochev, M. Gunzburger, and J. Shadid. A taxonomy of consistently
stabilized finite element methods for the Stokes problem. SIAM J. Sci. Comp.,
submitted.

[2] M. Behr. Stabilized finite element methods for incompressible flows with
emphasis on moving boundaries and interfaces. PhD thesis, University of
Minnesotta, Department of Aerospace Engineering and mechanics, 1992.

[3] M. Behr. Personal communication. 2001.

[4] M. A. Behr, L. P. Franca, and T. E. Tezduyar. Stabilized finite element methods
for the velocity-pressure-stress formulation of incompressible flows. Computer
Methods in Appl. Mech. Engrg., 104:31–48, 1993.

19



[5] J. Blasco and R. Codina. Stabilized finite element method for the transient
Navier-Stokes equations based on a pressure gradient projection. Comp. Meth.
Appl. Mech. Engrg., 182:277–300, 2000.

[6] J. Blasco and R. Codina. Space and time error estimates for a first-order,
pressure stabilized finite element method for the incompressible Navier-Stokes
equations. Appl. Numer. Math., 38:475–497, 2001.

[7] P. Bochev, M. Gunzburger, and J. Shadid. On stabilized finite element
methods for transient problems with varying time scales. In J. Eberhardsteiner
H. Mang, F. Rammerstorfer, editor, Proceedings of the Fifth World Congress
on Computational Mechnics, Vienna, Austria, 7-12 July 2002. TU Vienna,
Technical University, Vienna.

[8] S. F. Bradford and N. D. Katopodes. The antidissipative, non-monotone
behavior of Petrov-Galerkin upwinding. Int. J. Num. Meth. Fluids, 33:583–
608, 2000.

[9] F. Brezzi. On existence, uniqueness and approximation of saddle-point problems
arising from Lagrange multipliers. RAIRO Model. Math. Anal. Numer., 21:129–
151, 1974.

[10] F. Brezzi and J. Douglas. Stabilized mixed methods for the Stokes problem.
Numer. Math., 53:225–235, 1988.

[11] J. Douglas and J. Wang. An absolutely stabilized finite element method for the
Stokes problem. Math. Comp., 52:495–508, 1989.

[12] L. P. Franca and E. G. Dutra do Carmo. The Galerkin gradient least-squares
method. Comp. Meth. Appl. Mech. Engrg., 74:41–54, 1989.

[13] L. P. Franca and C. Farhat. Bubble functions prompt unusual stabilized finite
element methods. Comp. Meth. Appl. Mech. Engrg., 123:299–308, 1995.

[14] L. P. Franca and S. Frey. Stabilized finite element methods: II. The
incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Engrg.,
99:209–233, 1991.

[15] L. P. Franca, S. Frey, and T. J. R. Hughes. Stabilized finite element methods:
I. Application to the advective-diffusive model. Comput. Meth. Appl. Mech.
Engrg., 95:253–276, 1992.

[16] L. P. Franca and F. Valentin. On an improved unusual stabilized finite element
method for advective-reactive-diffusive equations. Comp. Meth. Appl. Mech.
Engrg., 189:1785–1800, 2000.

[17] I. Harari. Spatial stability of semidiscrete formulations for parabolic problems.
In J. Eberhardsteiner H. Mang, F. Rammerstorfer, editor, Proceedings of the
Fifth World Congress on Computational Mechnics, Vienna, Austria, 7-12 July
2002. TU Vienna, Technical University, Vienna.

[18] I. Harari. Stability of semidiscrete formulations for parabolic problems at small
time steps. Comput. Meth. Appl. Mech. Engrg., to appear, 2003.

20



[19] T. J. R. Hughes. Multiscale phenomena: Green’s function, the Dirichlet-to-
Neumann map, subgrid scale models, bubbles and the origins of stabilized
methods. Comp. Meth. Appl. Mech. Engrg., 127:387–401, 1995.

[20] T. J. R. Hughes and A. Brooks. A theoretical framework for Petrov-Galerkin
methods with discontinuous weighting functions: Application to the streamline-
upwind procedure. In R. H. Gallagher et al, editor, Finite Elements in Fluids,
volume 4, pages 47–65. J. Willey & Sons, 1982.

[21] T. J. R. Hughes, G. R. Feijoo, L. Mazzei, and J. B. Quincy. The variational
multiscale method: A paradigm for computational mechanics. Comp. Meth.
Appl. Mech. Engrg., 166:3–24, 1998.

[22] T. J. R. Hughes, L. Franca, and M. Balestra. A new finite element
formulation for computational fluid dynamics: V. Circumventing the Babuska-
Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem
accommodating equal-order interpolations. Comput. Meth. Appl. Mech. Engrg.,
59:85–99, 1986.

[23] T. J. R. Hughes and L. P. Franca. A new finite element formulation for
computational fluid dynamics: VII. The Stokes problem with various well-posed
boundary conditions: symmetric formulations that converge for all velocity
pressure spaces. Comput. Meth. Appl. Mech. Engrg.,, 65:85–96, 1987.

[24] T. J. R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation
for computational fluid dynamics: II. Beyond SUPG. Comput. Meth. Appl.
Mech. Engrg., 54:341–355, 1986.

[25] F. Ilinica and J.-F. Hetu. Galerkin gradient least-squares formulations for
transient conduction heat transfer. Comput. Meth. Appl. Mech. Engrg.,
191:3073–3097, 2002.

[26] C. Johnson, U. Navert, and J. Pitkaranta. Finite element methods for linear
hyperbolic problems. Comput. Meth. Appl. Mech. Engrg., 45:285–312, 1984.

[27] P.Ciarlet. Finite Element Method for Elliptic Problems. North Holland,
Amsterdam, 1978.

[28] J. N. Shadid and C. Obert. Preliminary studies of time-discretization accuracy
with MP Salsa. 2002, unpublished.

[29] F. Shakib. Finite element analysis of the compressible Euler and Navier-Stokes
equations. PhD thesis, Division of Applied Mathematics, Stanford University,
1989.

[30] F. Shakib and T. J. R. Hughes. A new finite element formulation
for computational fluid dynamics: IX. Fourier analysis of space-time
Galerkin/least-squares algorithms. Comp. Meth. Appl. Mech. Engrg., 87:35–
58, 1991.

[31] F. Shakib, T. J. R. Hughes, and Z. Johan. A new finite element formulation
for computational fluid dynamics: X. The compressible Euler and Navier-Stokes
equations. Comp. Meth. Appl. Mech. Engrg., 89:141–219, 1991.

21



[32] T. Tezduyar and Y. Osawa. Finite element stabilization parameters computed
from element matrices and vectors. Comp. Meth. Appl. Mech. Engrg., 190:411–
430, 2000.

22



Table 1
Finite element errors after one implicit Euler step: Taylor-Hood spatial discretiza-
tion.

velocity pressure

n L2 H1 L2

ρ > 0.0005

1 0.39334D-03 0.30349D-01 0.67770D-03

2 0.39244D-03 0.30349D-01 0.69915D-03

3 0.39239D-03 0.30352D-01 0.90321D-03

ρ < 0.0005

4 0.39477D-03 0.30390D-01 0.15369D-02

5 0.39665D-03 0.30439D-01 0.18965D-02

6 0.39698D-03 0.30450D-01 0.66562D-01
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Fig. 1. Pressure approximation for ρ1, ρ2 and ρ3 (top) and ρ4, ρ5 and ρ6 (bottom):
Taylor-Hood spatial discretization.
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Table 2
Finite element errors after one implicit Euler step: Pressure-Poisson spatial stabi-
lization and P2-P2 elements.

velocity pressure

L2 H1 L2 H1

S 0.399E-3 0.303E-1 0.450E-2 0.179E-1

n τS τT τS τT τS τT τS τT

ρ > 0.0005

1 .400E-3 .400E-3 .303E-1 .303E-1 .223E-2 .223E-2 .176E-1 .176E-1

2 .400E-3 .400E-3 .303E-1 .303E-1 .450E-2 .450E-2 .180E-1 .180E-1

3 .398E-3 .398E-3 .304E-1 .303E-1 .245E-1 .237E-1 .487E-1 .543E-1

ρ < 0.0005

4 .398E-3 .393E-3 .304E-1 .304E-1 .141E+0 .332E-1 .295E+0 .151E+1

5 .398E-3 .391E-3 .304E-1 .305E-1 .446E+0 .784E+0 .113E+1 .213E+2

6 .397E-3 .391E-3 .305E-1 .305E-1 .789E+0 .889E+1 .229E+1 .221E+3

Table 3
Finite element errors after one implicit Euler step: Douglas-Wang spatial stabiliza-
tion and P2-P2 elements.

velocity pressure

L2 H1 L2 H1

S 0.399E-3 0.304E-1 0.228E-2 0.157E-1

n τS τT τS τT τS τT τS τT

ρ > 0.0005

1 .398E-3 .398E-3 .304E-1 .304E-1 .241E-2 .241E-2 .157E-1 .157E-1

2 .398E-3 .398E-3 .304E-1 .304E-1 .356E-2 .356E-2 .164E-1 .164E-1

3 .398E-3 .398E-3 .304E-1 .304E-1 .145E-1 .142E-1 .350E-1 .438E-1

ρ < 0.0005

4 .398E-3 .393E-3 .304E-1 .304E-1 .999E-1 .299E-1 .235E+0 .151E+1

5 .398E-3 .391E-3 .304E-1 .305E-1 .433E+0 .783E+0 .114E+1 .213E+2

6 .397E-3 .391E-3 .304E-1 .305E-1 .852E+0 .890E+1 .246E+1 .221E+3
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Table 4
Finite element errors after one implicit Euler step: Galerkin-Least-Squares spatial
stabilization and P2-P2 elements.

velocity pressure

L2 H1 L2 H1

S 0.713E-3 0.438E-1 0.237E-2 0.176E-1

n τS τT τS τT τS τT τS τT

ρ > 0.0005

1 .690E-3 .690E-3 .435E-1 .435E-1 .319E-2 .319E-2 .175E+0 .175E+0

2 .601E-3 .600E-3 .408E-1 .408E-1 .209E-1 .208E-1 .171E+0 .171E+0

3 .438E-3 .430E-3 .326E-1 .322E-1 .909E-1 .820E-1 .248E+0 .255E+0

ρ < 0.0005

4 .396E-3 .392E-3 .304E-1 .304E-1 .175E+0 .364E-1 .431E+0 .160E+1

5 .397E-3 .391E-3 .304E-1 .305E-1 .330E+0 .786E+0 .899E+0 .213E+2

6 .397E-3 .391E-3 .304E-1 .305E-1 .547E+0 .890E+1 .173E+1 .221E+3
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Fig. 2. Pressure approximation for ρ1, ρ2 and ρ3 (top) and ρ4, ρ5 and ρ6 (bottom):
Pressure-Poisson stabilization with τS
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Fig. 3. Pressure approximation for ρ1, ρ2 and ρ3 (top) and ρ4, ρ5 and ρ6 (bottom):
Douglas-Wang stabilization with τS
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Fig. 4. Pressure approximation for ρ1, ρ2 and ρ3 (top) and ρ4, ρ5 and ρ6 (bottom):
Galerkin-Least-Squares stabilization with τS
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Fig. 5. Pressure approximation for ρ1, ρ2 and ρ3 (top) and ρ4, ρ5 and ρ6 (bottom):
Pressure-Poisson stabilization with τT
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Fig. 6. Pressure approximation for ρ1, ρ2 and ρ3 (top) and ρ4, ρ5 and ρ6 (bottom):
Douglas-Wang stabilization with τT
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Fig. 7. Pressure approximation for ρ1, ρ2 and ρ3 (top) and ρ4, ρ5 and ρ6 (bottom):
Galerkin-Least-Squares stabilization with τT

28


